[Development of new skin substitutes based on bioresorbable polymer for treatment of severe skin defects]

Ann Pharm Fr. 2008 Nov-Dec;66(5-6):313-8. doi: 10.1016/j.pharma.2008.07.011. Epub 2008 Oct 18.
[Article in French]

Abstract

Over the last years, increasing attention has been paid to skin engineering due to its predominant function in body integrity. Thus, many laboratories are attempting to develop a dermal-epidermal complex. The aim of this study was to evaluate the potential of poly(alpha-hydroxyacid)s in the development of biocompatible and bioresorbable dermal scaffold combining human fibroblasts and keratinocytes, in order to obviate the drawbacks of using natural polymers such as collagen, hyaluronic acid and fibrin. We first confirmed the interest of poly(d,l-lactic acid) (PLA(50)) during the reconstitution of epidermis and next, we investigated the potential of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(d,l-lactic acid) (PLA(50)-PEG-PLA(50)) for either skin cytocompatibility or scaffold processing. Data showed that PLA(50)-PEG-PLA(50) is compatible with the culture of human skin cells (fibroblasts and keratinocytes) and the development of a porous scaffold; two requirements compulsory for being considered as an adequate skin substitute. In fine, this material could represent the first generation of new skin dressings, i.e. a new concept taking advantage of both implantable devices and current dressings.

Publication types

  • Evaluation Study

MeSH terms

  • Absorbable Implants
  • Biocompatible Materials
  • Cells, Cultured / cytology
  • Cells, Cultured / drug effects
  • Drug Design
  • Fibroblasts / cytology
  • Fibroblasts / drug effects*
  • Humans
  • Keratinocytes / cytology
  • Keratinocytes / drug effects*
  • Lactates / chemistry
  • Lactates / pharmacology*
  • Lactic Acid / chemistry
  • Lactic Acid / pharmacology*
  • Male
  • Materials Testing
  • Polyesters
  • Polyethylene Glycols / chemistry
  • Polyethylene Glycols / pharmacology*
  • Polymers / chemistry
  • Polymers / pharmacology*
  • Skin, Artificial*
  • Tissue Scaffolds

Substances

  • Biocompatible Materials
  • Lactates
  • Polyesters
  • Polymers
  • poly(lactic acid-ethylene glycol)
  • Lactic Acid
  • Polyethylene Glycols
  • poly(lactide)