There is a severe shortage of knowledge of bee biogeography. Some former studies have highlighted a link between bee diversity and xeric ecosystems, but we know practically nothing of the macro-ecological factors driving bee diversity. The present study aims to analyse the main macro-ecological factors driving bee species-richness in the Saharan region. Our dataset includes 25,000+ records for localities in Africa, between 37 degrees and 10 degrees N. Maps and GIS were used to get a first overview of the distribution of the studied taxa. Partial least squares analysis (PLS) was used to study the impact of a set of ecological factors on the bee species richness (SR). The mapping highlighted the clustering of the highest bee SR values in some parts of the Saharan area (e.g. Maghreb, western Africa). In Central Sahara, there is an obvious topological coincidence of the high SR, the local mountain chains and the inland waters. The PLS helped to quantify the relationships between bee SR and a set of eco-climatic variables. It also highlighted a residual variance not explained by the considered descriptors. Our results recover the tight link between bee SR and xeric ecosystems. They also suggest that, within these ecosystems, bee SR is driven by an optimum of the energy-water balance (on which adjustment is allowed by the above gradients).