Curvature-induced base pair "slipping" effects in DNA-nanoparticle hybridization

Nano Lett. 2009 Jan;9(1):317-21. doi: 10.1021/nl8030482.

Abstract

Experiments are presented that suggest DNA strands chemically immobilized on gold nanoparticle surfaces can engage in two types of hybridization: one that involves complementary strands and normal base pairing interactions and a second one assigned as a "slipping" interaction, which can additionally stabilize the aggregate structures through non-Watson-Crick type base pairing or interactions less complementary than the primary interaction. The curvature of the particles appears to be a major factor that contributes to the formation of these slipping interactions as evidenced by the observation that flat gold triangular nanoprism conjugates of the same sequence do not support them. Finally, these slipping interactions significantly stabilize nanoparticle aggregate structures, leading to large increases in T(m)'s and effective association constants as compared with free DNA and particles that do not have the appropriate sequence to maximize their contribution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Pairing*
  • Crystallization / methods
  • DNA / chemistry*
  • DNA / ultrastructure*
  • In Situ Hybridization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances
  • DNA