Endoreduplication, a modified cell cycle that allows cells to increase ploidy without subsequent cell division, is a key component of plant growth and development. In this work, we show that some, but not all, of the endoreduplication of Arabidopsis (Arabidopsis thaliana) is mediated by the expression of a WD40 gene, FIZZY-RELATED2 (FZR2). Loss-of-function alleles show reduced endoreduplication and reduced expansion in trichomes and other leaf cells. Misexpression of FZR2 is sufficient to drive ectopic or extra endoreduplication in leaves, roots, and flowers, leading to alteration of cell sizes and, sometimes, organ size and shape. Our data, which suggest that reduced cell size can be compensated by increased cell proliferation to allow normal leaf morphology, are discussed with respect to the so-called compensation mechanism of plant development.