Mutated K-ras is frequently found in human malignancies and plays a key role in many signal transduction processes resulting in an altered gene and/or protein expression pattern. Proteins controlled by a constitutive activated mitogen-activated protein kinase pathway are primarily related to alterations in the mitochondrial and nuclear compartments. Therefore, different K-Ras mutants and respective control cells were subjected to two-dimensional gel electrophoresis using basic pH gradients. This approach led to the identification of differentially expressed proteins, such as members of the heterogeneous ribonucleoprotein family, and enzymes involved in cellular detoxification as well as in oxidative stress. Increased expression of these enzymes was paralleled by an elevated tolerance of K-ras mutants against the cytotoxic potential of hydrogen peroxide and formaldehyde as well as an altered redox status based on enhanced intracellular glutathione (GSH) levels indicating an improved detoxification potential of defined K-ras transfectants, whereas down-regulation by RNA interference of candidate proteins reversed the tolerance against these compounds. This hypothesis is supported by an up-regulated expression of a key enzyme of the pentose phosphate pathway resulting in an increased production of NADPH required for anabolic processes as well as the rebuilding of oxidized GSH. Both the enhanced resistance against xenobiotic compounds as well as an altered oxidative pathway might confer growth advantages for tumor cells carrying dominant-positive K-ras mutations such as in lung or pancreatic adenocarcinoma.