[Validation of the prehospital mSTaRT triage algorithm. A pilot study for the development of a multicenter evaluation]

Unfallchirurg. 2009 Jan;112(1):23-30, 32. doi: 10.1007/s00113-008-1517-6.
[Article in German]

Abstract

Introduction: Successful management of a mass casualty incident requires integrated operating procedures. A common division of victims into descriptive needs-based groups and the corresponding decision processes is the key to ensuring a successful operational response. The mSTaRT ("modified simple triage and rapid treatment") algorithm should enable emergency medical technicians to conduct triage, perform appropriate medical interventions, and coordinate transportation to adequate care facilities. The aim of this study was to design a concept to validate the mSTaRT algorithm.

Methods: Standardized evaluation sheets were distributed to emergency medical services (EMS) staff to prospectively classify trauma patients according to the mSTaRT algorithm: red (immediate: critically injured patients who can be helped by immediate transport), yellow (urgent: severely injured patients whose transport can be delayed), or green (delayed: patients with minor injuries who need help less urgently). The patients were then reevaluated in the emergency department, and the results were compared. The main points of the comparison were consistency of triage category and rates of overtriage and undertriage.

Results: The study included 151 trauma patients. Of these, 62.3% were triaged correctly, 10.6% were overtriaged (2.6% critical overtriage), and 27.1% were undertriaged (4.0% critical undertriage). In the critically injured (immediate) category, the positive likelihood ratio (LR+) was 17.3 (95% CI 3.8-795), and the negative likelihood ratio (LR-) was 0.51 (95% CI 0.22-0.83). The probability of identifying a critically injured (immediate) patient was 17.3 times higher than the probability of identifying a severely (urgent) or minor (delayed) injured patient as immediate. Therefore, the rate of overtriage was very low. But every second patient who should have been classified as immediate was undertriaged by the EMS personnel. This undertriage was due to patients' suffering from head trauma, a well-known problem in the clinical context but a new problem in the triage context.

Conclusion: The results of our pilot study show that by using mSTaRT, patients designated as yellow (urgent) and green (delayed) will be accurately distinguished from red (immediate) patients; therefore, only a small number of patients will be overtriaged as red. However, some patients with severe head injury may not be initially assigned to the red category as required, resulting in undertriage. Consequently, modification of the mSTaRT procedures should be considered. A further identifier in the algorithm or checkpoint in the process should act as a safety net for catching severe head injury. A larger data set is required to further validate the mSTaRT algorithm. This will be acquired by means of a multicenter study.

Publication types

  • Evaluation Study
  • Multicenter Study
  • Validation Study

MeSH terms

  • Algorithms*
  • Decision Support Techniques*
  • Germany
  • Humans
  • Pilot Projects
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Transportation of Patients
  • Triage / methods*
  • Wounds and Injuries / classification*
  • Wounds and Injuries / diagnosis*