We identified a novel paromomycin resistance-associated mutation in rpsL, caused by the insertion of a glycine residue at position 92, in Streptomyces coelicolor ribosomal protein S12. This insertion mutation (GI92) resulted in a 20-fold increase in the paromomycin resistance level. In combination with another S12 mutation, K88E, the GI92 mutation markedly enhanced the production of the blue-colored polyketide antibiotic actinorhodin and the red-colored antibiotic undecylprodigiosin. The gene replacement experiments demonstrated that the K88E-GI92 double mutation in the rpsL gene was responsible for the marked enhancement of antibiotic production observed. Ribosomes with the K88E-GI92 double mutation were characterized by error restrictiveness (i.e., hyperaccuracy). Using a cell-free translation system, we found that mutant ribosomes harboring the K88E-GI92 double mutation but not ribosomes harboring the GI92 mutation alone displayed sixfold greater translation activity relative to that of the wild-type ribosomes at late growth phase. This resulted in the overproduction of actinorhodin, caused by the transcriptional activation of the pathway-specific regulatory gene actII-orf4, possibly due to the increased translation of transcripts encoding activators of actII-orf4. The mutant with the K88E-GI92 double mutation accumulated a high level of ribosome recycling factor at late stationary phase, underlying the high level of protein synthesis activity observed.