Xenopus laevis has for many years been successfully used to study Wnt signaling during early development. However, because loss of function and gain of function experiments generally involve injecting RNA, DNA, or morpholinos into early embryos (1- to 32-cell), major phenotypes are often observed before the embryo has reached later stages of development. The combined use of transgenics and a heat shock inducible system has overcome these problems and enables investigations of Wnt signaling at later stages of Xenopus embryonic development, including organogenesis.