Advances in microscopy and fluorescent probes provide new insight into the nanometer-scale biochemistry governing the interactions between eukaryotic cells and pathogens. When combined with mathematical modelling, these new technologies hold the promise of qualitative, quantitative and predictive descriptions of these pathways. Using the light microscope to study the spatial and temporal relationships between pathogens, host cells and their respective biochemical machinery requires an appreciation for how fluorescent probes and imaging devices function. This review summarizes how live cell fluorescence microscopy with common instruments can provide quantitative insight into the cellular and molecular functions of hosts and pathogens.