Monte Carlo-based diffusion tensor tractography with a geometrically corrected voxel-centre connecting method

Phys Med Biol. 2009 Feb 21;54(4):1009-33. doi: 10.1088/0031-9155/54/4/013. Epub 2009 Jan 16.

Abstract

Diffusion tensor tractography (DTT) allows one to explore axonal connectivity patterns in neuronal tissue by linking local predominant diffusion directions determined by diffusion tensor imaging (DTI). The majority of existing tractography approaches use continuous coordinates for calculating single trajectories through the diffusion tensor field. The tractography algorithm we propose is characterized by (1) a trajectory propagation rule that uses voxel centres as vertices and (2) orientation probabilities for the calculated steps in a trajectory that are obtained from the diffusion tensors of either two or three voxels. These voxels include the last voxel of each previous step and one or two candidate successor voxels. The precision and the accuracy of the suggested method are explored with synthetic data. Results clearly favour probabilities based on two consecutive successor voxels. Evidence is also provided that in any voxel-centre-based tractography approach, there is a need for a probability correction that takes into account the geometry of the acquisition grid. Finally, we provide examples in which the proposed fibre-tracking method is applied to the human optical radiation, the cortico-spinal tracts and to connections between Broca's and Wernicke's area to demonstrate the performance of the proposed method on measured data.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Brain / cytology*
  • Data Interpretation, Statistical
  • Diffusion Magnetic Resonance Imaging / methods*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Monte Carlo Method
  • Nerve Fibers, Myelinated / ultrastructure*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results*
  • Sensitivity and Specificity