Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway

Biochemistry. 2009 Feb 10;48(5):1084-93. doi: 10.1021/bi802047y.

Abstract

Tubulins undergo unique post-translational modifications, such as tyrosination, polyglutamylation, and polyglycylation. These modifications are performed by members of a protein family, the tubulin tyrosine ligase (TTL)-like (TTLL) family, which is characterized by the presence of a highly conserved TTL domain. We and others have recently identified tubulin polyglutamylases in the TTLL family [Janke, C., et al. (2005) Science 308, 1758-1762; Ikegami, K., et al. (2006) J. Biol. Chem. 281, 30707-30716; van Dijk, J., et al. (2007) Mol. Cell 26, 437-448]. Previously, we identified TTLL7 as a beta-tubulin-selective polyglutamylase. However, there is controversy over whether TTLL7 functions as an initiase, elongase, or both in polyglutamylation. In this report, we investigate the polyglutamylation reaction by TTLL7 by employing a recombinant enzyme and in vitro reaction. Two-dimensional electrophoresis and tandem mass spectrometry showed that TTLL7 performed both the initiation and elongation of polyglutamylation on beta-tubulin. Recombinant TTLL7 performed with a maximal and specific activity to polymerized tubulin at a neutral pH and a lower salt concentration. The initial rate and inhibitor analyses revealed that the mechanism of binding of three substrates, glutamate, ATP, and tubulin, to the enzyme was a random sequential pathway. Our findings provide evidence that mammalian TTLL7 performs both initiation and elongation in the polyglutamylation reaction on beta-tubulin through a random sequential pathway.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Amino Acid Sequence
  • Animals
  • Glutamates / metabolism
  • Mice
  • Molecular Sequence Data
  • Peptide Chain Elongation, Translational*
  • Peptide Chain Initiation, Translational*
  • Peptide Synthases / chemistry
  • Peptide Synthases / physiology*
  • Polyglutamic Acid / chemistry*
  • Polyglutamic Acid / metabolism
  • Protein Binding
  • Protein Processing, Post-Translational / physiology*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Substrate Specificity
  • Tubulin / chemistry*
  • Tubulin / metabolism*

Substances

  • Glutamates
  • Recombinant Proteins
  • Tubulin
  • Polyglutamic Acid
  • Adenosine Triphosphate
  • Peptide Synthases
  • tubulin polyglutamylase