Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering

Biomaterials. 2009 Apr;30(12):2252-8. doi: 10.1016/j.biomaterials.2008.12.068. Epub 2009 Jan 18.

Abstract

Mimicking certain features (e.g. nanoscale topography and biological cues) of natural extracellular matrix (ECM) is advantageous for the successful regeneration of damaged tissue. In this study, nanofibrous gelatin/apatite (NF-gelatin/apatite) composite scaffolds have been fabricated to mimic both the physical architecture and chemical composition of natural bone ECM. A thermally induced phase separation (TIPS) technique was developed to prepare nanofibrous gelatin (NF-gelatin) matrix. The NF-gelatin matrix mimicked natural collagen fibers and had an average fiber diameter of about 150nm. By integrating the TIPS method with porogen leaching, three-dimensional NF-gelatin scaffolds with well-defined macropores were fabricated. In comparison to Gelfoam (a commercial gelatin foam) with similar pore size and porosity, the NF-gelatin scaffolds exhibited a much higher surface area and mechanical strength. The surface area and compressive modulus of NF-gelatin scaffolds were more than 700 times and 10 times higher than that of Gelfoam, respectively. The NF-gelatin scaffolds also showed excellent biocompatibility and mechanical stability. To further enhance pre-osteoblast cell differentiation as well as improving mechanical strength, bone-like apatite particles (<2microm) were incorporated onto the surface of NF-gelatin scaffolds via a simulated body fluid (SBF) incubation process. The NF-gelatin/apatite scaffolds 5 days after SBF treatment showed significantly higher mechanical strength than NF-gelatin scaffolds 5 days after SBF treatment. Furthermore, the incorporated apatite in the NF-gelatin/apatite composite scaffold enhanced the osteogenic differentiation. The expression of BSP and OCN in the osteoblast-(NF-gelatin/apatite composite) constructs was about 5 times and 2 times higher than in the osteoblast-(NF-gelatin) constructs 4 weeks after cell culture. The biomimetic NF-gelatin/apatite scaffolds are, therefore, excellent for bone tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Apatites / chemistry*
  • Biomimetic Materials / chemistry*
  • Bone and Bones*
  • Cell Adhesion
  • Cell Line
  • Cell Proliferation
  • Gelatin / chemistry*
  • Gelatin / ultrastructure
  • Mice
  • Microscopy, Electron, Scanning
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Tissue Engineering / methods*

Substances

  • Apatites
  • Gelatin