Selective genotyping and phenotyping strategies are used to lower the cost of quantitative trait locus studies. Their efficiency has been studied primarily in simplified contexts--when a single locus contributes to the phenotype, and when the residual error (phenotype conditional on the genotype) is normally distributed. It is unclear how these strategies will perform in the context of complex traits where multiple loci, possibly linked or epistatic, may contribute to the trait. We also do not know what genotyping strategies should be used for nonnormally distributed phenotypes. For time-to-event phenotypes there is the additional question of choosing follow-up time duration. We use an information perspective to examine these experimental design issues in the broader context of complex traits and make recommendations on their use.