Phosphorylation-dependent ubiquitination and degradation of the IFNAR1 chain of the type I interferon (IFN) receptor is regulated by two different pathways, one of which is ligand independent. We report that this ligand-independent pathway is activated by inducers of unfolded protein responses (UPR), including viral infection, and that such activation requires the endoplasmic reticulum-resident protein kinase PERK. Upon viral infection, activation of this pathway promotes phosphorylation-dependent ubiquitination and degradation of IFNAR1, specifically inhibiting type I IFN signaling and antiviral defenses. Knockin of an IFNAR1 mutant insensitive to virus-induced turnover or conditional knockout of PERK prevented IFNAR1 degradation, whether UPR-induced or virus-induced, and restored cellular responses to type I IFN and resistance to viruses. These data suggest that specific activation of the PERK component of UPR can favor viral replication. Interfering with PERK-dependent IFNAR1 degradation could therefore contribute to therapeutic strategies against viral infections.