This paper describes a method that allows one to recover both components of a 2-D vector field based on boundary information only, by solving a system of linear equations. The analysis is carried out in the digital domain and takes advantage of the redundancy in the boundary data, since these may be viewed as weighted sums of the local vector field's Cartesian components. Furthermore, a sampling of lines is used in order to combine the available measurements along continuous tracing lines with the digitised 2-D space where the solution is sought. A significant enhancement in the performance of the proposed algorithm is achieved by using, apart from real data, also boundary data obtained at virtual sensors. The potential of the proposed method is demonstrated by presenting an example of vector field reconstruction.