This clinical study investigates whether the spatial patterns of hemiparetic stroke patients operating a non-invasive Motor Imagery-based Brain Computer Interface (MI-BCI) is comparable to healthy subjects. The spatial patterns for a specific frequency range are generated using the common spatial pattern (CSP) algorithm, of which is highly successful for discriminating two classes of EEG measurements in MI-BCI. The spatial patterns illustrate how the presumed sources project on the scalp and are effective in verifying the neurophysiological plausibility of the computed solution. The spatial patterns show focused activity in ipsilateral as well as contralateral hemisphere with respect to the hand by tapping or motor imagery in 2 BCI-artful healthy subjects and 12 BCI-naïve hemiparetic stroke patients. The results also show that neurophysiologically interpretable spatial patterns is more common in performing motor imagery compared to finger tapping by hemiparetic stroke patients. Hence, this shows that hemiparetic stroke patients are capable of operating MI-BCI.