Gray matter metabolism in acute and chronic hydrocephalus

Neuroscience. 2009 Mar 17;159(2):570-7. doi: 10.1016/j.neuroscience.2009.01.008. Epub 2009 Jan 10.

Abstract

Although hydrocephalus is usually considered a disorder of periventricular white matter, disturbance of gray matter is probably also involved. However, so far gray matter metabolism has not been studied in experimental hydrocephalus using high resolution in vivo magnetic resonance spectroscopy (MRS). Therefore 15 rats were made hydrocephalic by injection of 0.1 ml kaolin into the cisterna magna, whereas 10 sham-operated rats served as controls. (1)H MRS and magnetic resonance imaging were performed longitudinally in acute hydrocephalus 2 and 4 weeks after kaolin treatment and in chronic hydrocephalus after 6 weeks. Volumes of interest included the gray matter regions cortex, thalamus and hippocampus. In hydrocephalic animals, (1)H MRS revealed decreased glutamate levels in all examined areas at all time points. Moreover, in acute hydrocephalus disturbances were noted in the hippocampus with decreased concentrations of N-acetyl aspartate, creatine, inositol and taurine, and in the cortex with decreased taurine levels. A clear lactate peak was detected in CSF spectra from hydrocephalic rats. In addition, T2-weighted images showed increase of free water in the hippocampus. It can be concluded that glutamate metabolism is deranged in gray matter in acute and chronic hydrocephalus in rats. If confirmed in humans, early detection of glutamatergic disturbances and lactate accumulation using in vivo(1)H MRS might serve as an indication for surgical treatment of hydrocephalus before irreversible neuronal damage develops.

MeSH terms

  • Analysis of Variance
  • Animals
  • Aspartic Acid / analogs & derivatives
  • Aspartic Acid / metabolism
  • Brain / metabolism*
  • Brain / pathology*
  • Brain Chemistry / physiology
  • Brain Mapping
  • Creatine / metabolism
  • Disease Models, Animal
  • Glutamic Acid / metabolism
  • Hydrocephalus / chemically induced
  • Hydrocephalus / metabolism*
  • Hydrocephalus / pathology*
  • Image Processing, Computer-Assisted
  • Inositol / metabolism
  • Kaolin
  • Lactic Acid / metabolism
  • Magnetic Resonance Imaging / methods
  • Magnetic Resonance Spectroscopy / methods
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Time Factors
  • Tritium

Substances

  • Tritium
  • Kaolin
  • Aspartic Acid
  • Lactic Acid
  • Glutamic Acid
  • Inositol
  • N-acetylaspartate
  • Creatine