Objective: To investigate the direct effects of placenta growth factor (PlGF) and its specific receptor, flt-1, which are known to mediate angiogenesis, on the inflammatory process of rheumatoid arthritis (RA).
Methods: Expression of PlGF and flt-1 in the synovial tissue of RA patients was examined using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the concentrations of PlGF, tumor necrosis factor alpha (TNFalpha), and interleukin-6 (IL-6) in culture supernatants of either mononuclear cells or synoviocytes. The flt-1 expression level in mononuclear cells was analyzed by flow cytometry. Experimental arthritis was induced in mice either by immunization with type II collagen (CII) or by injection of anti-CII antibody.
Results: PlGF was highly expressed in the synovium of RA patients, and its primary source was fibroblast-like synoviocytes (FLS). When stimulated with IL-1beta, FLS from RA patients produced higher amounts of PlGF than did FLS from patients with osteoarthritis. Exogenous PlGF specifically increased the production of TNFalpha and IL-6 in mononuclear cells from RA patients (but not those from healthy controls) via a calcineurin-dependent pathway. The response to PlGF was associated with increased expression of flt-1 on RA monocytes, which could be induced by IL-1beta and TNFalpha. A novel anti-flt-1 hexapeptide, GNQWFI, abrogated the PlGF-induced increase in TNFalpha and IL-6 production, and also suppressed CII-induced arthritis and serum IL-6 concentrations in mice. Moreover, genetic ablation of PlGF prevented the development of anti-CII antibody-induced arthritis in mice.
Conclusion: Our data suggest that enhanced expression of PlGF and flt-1 may contribute to rheumatoid inflammation by triggering production of proinflammatory cytokines. The use of the novel anti-flt-1 peptide, GNQWFI, may be an effective strategy for the treatment of RA.