In breast cancer, various clinical parameters are assessed to define clinical stage and thus obtain a more accurate prognosis. However, banks of tumor tissues are an important source of material for studies of risk of recurrence and of features governing clinical outcome in breast cancer. Although the heterogeneous characteristics of individual tumors, subtle phenotypes and stem cells can only be identified in viable cells, tissue banks often give low priority to the preservation of living cells because it is labor-intensive and expensive. The present study was designed to evaluate the feasibility of introducing, within the routine procedures of tissue preservation, a cryopreservation protocol that allows the recovery of living cells after storage. We analyzed the effect of storage time on cell viability, growth rates, and protein expression of ten human breast cancer specimens subjected to various cryopreservation techniques. Cryopreservation of cancer tissue specimens for 12 months allowed protein characterization but not the recovery of living cells. Here we show that enzymatic digestion immediately before slow freezing, and storage in liquid nitrogen permits the recovery and expansion of living cells that can be tailored to specific requirements and projects.