A novel bacterial strain, designated ANL-iso2(T), was obtained from an enrichment culture inoculated with a mixture of soda lake sediments by using isobutyronitrile (iBN) as the carbon, energy and nitrogen source at pH 10. The enrichment resulted in a stable binary culture containing iBN-degrading Gram-positive rods and a satellite Gram-negative gammaproteobacterium Marinospirillum sp. strain (ANL-isoa) scavenging the products of nitrile hydrolysis. Cells of the iBN-degrading strain, ANL-iso2(T), were short, non-motile, non-spore-forming rods. Strain ANL-iso2(T) was capable of utilizing propionitrile (C(3)), butyronitrile (C(4)), isobutyronitrile (C(4)), valeronitrile (C(5)) and capronitrile (C(6)) as the only growth substrate. Growth on nitriles was biphasic with fast initial hydrolysis of nitriles to the corresponding amides, carboxylic acids and ammonia and slow further utilization of these products resulting in biomass growth. Cells of strain ANL-iso2(T) grown with iBN were capable of extremely active hydration of a wide range of nitriles into the corresponding amides and much slower hydrolysis of these amides to the corresponding carboxylic acids. This indicated the presence of the nitrile hydratase/amidase pathway of nitrile degradation in the novel bacterium. Strain ANL-iso2(T) showed obligately alkaliphilic growth on iBN within the pH range 8.4-10.6, with optimum growth at 9.0-9.5. It was moderately salt-tolerant, with a salt range for growth of 0.1-2.0 M Na(+) and an optimum salt concentration for growth of 0.2-0.3 M. The dominant fatty acids in the polar lipids were C(16 : 0), iso-C(14), C(14 : 0), iso-C(16) and C(16 : 1)omega7. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. Phylogenetic analysis placed strain ANL-iso2(T) within the class Actinobacteria as an independent lineage with only uncultured bacteria from soda lakes as its nearest relatives. On the basis of its unique phenotype and distinct phylogeny, strain ANL-iso2(T) is considered to represent a novel species of a new genus, for which the name Nitriliruptor alkaliphilus gen. nov., sp. nov. is proposed. The type strain of the type species, Nitriliruptor alkaliphilus, is ANL-iso2(T) (=DSM 45188(T)=NCCB 100119(T)=UNIQEM U239(T)). Phylogenetic data suggest that the novel bacterium forms the basis of a new family Nitriliruptoraceae fam. nov. and a novel order Nitriliruptorales ord. nov. within the class Actinobacteria.