Inducible mutant huntingtin expression in HN10 cells reproduces Huntington's disease-like neuronal dysfunction

Mol Neurodegener. 2009 Feb 9:4:11. doi: 10.1186/1750-1326-4-11.

Abstract

Background: Expansion of a polyglutamine repeat at the amino-terminus of huntingtin is the probable cause for Huntington's disease, a lethal progressive autosomal-dominant neurodegenerative disorders characterized by impaired motor performance and severe brain atrophy. The expanded polyglutamine repeat changes the conformation of huntingtin and initiates a range of pathogenic mechanisms in neurons including intracellular huntingtin aggregates, transcriptional dysregulation, energy metabolism deficits, synaptic dystrophy and ultimately neurodegeneration. It is unclear how these events relate to each other or if they can be reversed by pharmacological intervention. Here, we describe neuronal cell lines expressing inducible fragments of normal and mutant huntingtin.

Results: In HN10 cells, the expression of wild type and mutant huntingtin fragments was dependent on the induction time as well as on the concentration of the RheoSwitch(R) inducing ligand. In order to analyze the effect of mutant huntingtin expression on cellular functions we concentrated on the 72Q exon1 huntingtin expressing cell line and found that upon induction, it was possible to carefully dissect mutant huntingtin-induced phenotypes as they developed over time. Dysregulation of transcription as a result of mutant huntingtin expression showed a transcription signature replicating that reported in animal models and Huntington's disease patients. Crucially, triggering of neuronal differentiation in mutant huntingtin expressing cell resulted in the appearance of additional pathological hallmarks of Huntington's disease including cell death.

Conclusion: We developed neuronal cell lines with inducible expression of wild type and mutant huntingtin. These new cell lines represent a reliable in vitro system for modeling Huntington's disease and should find wide use for high-throughput screening application and for investigating the biology of mutant huntingtin.