Introduction: Adipose tissue-derived stem cells (ADSC) could potentially restore endothelial function in vasculogenic erectile dysfunction (ED). The mechanism for ADSC endothelial differentiation remained unidentified.
Aim: To test whether ADSC could differentiate into endothelial cells in the penis and to identify the underlying mechanism of ADSC endothelial differentiation.
Methods: For in vivo endothelial differentiation, ADSC were labeled with bromodeoxyuridine (BrdU), injected into rat corpora cavernosa, and localized by immunofluorescence and phase-contrast microscopy. For in vitro endothelial differentiation, ADSC were grown in endothelial growth medium 2 (EGM2), stained for endothelial markers CD31, von Willebrand Factor (vWF), and endothelial nitric oxide synthase (eNOS), and assessed for the ability to form tube-like structures in Matrigel and to endocytose acetylated low-density lipoprotein (Ac-LDL). To identify factors that promote ADSC endothelial differentiation, ADSC were grown in various media, each of which contained a specific combination of supplemental factors and assessed for LDL-uptake. PD173074, a selective inhibitor of fibroblast growth factor 2 (FGF2) receptor, was used to confirm the importance of FGF2 signaling for ADSC endothelial differentiation.
Main outcome measures: In vivo endothelial differentiation was assessed by immunofluorescence microscopy. In vitro endothelial differentiation was assessed by immunofluorescence, Matrigel tube formation, and Ac-LDL uptake.
Results: Injected ADSC were localized to the sinusoid endothelium, some of which stained positive for both BrdU and endothelial antigen rat endothelial cell antigen. ADSC proliferated at a faster rate in EGM2 than in standard DMEM, expressed endothelial markers CD31, vWF, and eNOS, formed tube-like structures in Matrigel, and endocytosed Ac-LDL. These properties were greatly diminished when ADSC were grown in the absence of FGF2 but were unaffected when grown in the absence of vascular endothelial growth factor, insulin-like growth factor, or epidermal growth factor. Furthermore, ADSC displayed similar endothelial properties when grown in FGF2-supplemented basic medium as in EGM2. Finally, blockade of FGF2 signaling with PD173074 abrogated ADSC endothelial differentiation.
Conclusions: ADSC could differentiate into endothelial cells in the penis. FGF2 signaling mediates ADSC endothelial differentiation.