Pcl5 is a Saccharomyces cerevisiae cyclin that directs the phosphorylation of the general amino acid control transcriptional activator Gcn4 by the cyclin-dependent kinase (CDK) Pho85. Phosphorylation of Gcn4 by Pho85/Pcl5 initiates its degradation via the ubiquitin/proteasome system and is regulated by the availability of amino acids. In this study, we show that Pcl5 is a nuclear protein and that artificial dislocation of Pcl5 into the cytoplasm prevents the degradation of Gcn4. Nuclear localization of Pcl5 depends on the beta-importin Kap95 and does not require Pho85, Gcn4, or the CDK inhibitor Pho81. Pcl5 nuclear import is independent on the availability of amino acids and is mediated by sequences in its C-terminal domain. The nuclear localization signal is distinct from other functional domains of Pcl5. This is corroborated by a C-terminally truncated Pcl5 variant, which carries the N-terminal nuclear domain of Pho80. This hybrid is still able to fulfill Pcl5 function, whereas Pho80, which is another Pho85 interacting cyclin, does not mediate Gcn4 degradation.