Recently, microfluidic systems have shown great potential in the study of molecular and cellular biology. With its excellent properties, such as miniaturization, integration and automation, to name just a few, microfluidics creates new opportunities for the spatial and temporal control of cell growth and environmental stimuli in vitro. In the field of neuroscience, microfluidic devices offer precise control of the microenvironment surrounding individual cells, and the delivery of biochemical or physical cues to neural networks or single neurons. The intent of this review is to outline recent advances in microfluidic-based applications in neurobiology, with emphasis on neuron culture, neuron manipulation, neural stem cell differentiation, neuropharmacology, neuroelectrophysiology, and neuron biosensors. It also aims to stimulate development of microfluidic-based applications in neurobiology by involving scientists from various disciplines, especially neurobiology and microtechnology.