Low-density macroarray for rapid detection and identification of Crimean-Congo hemorrhagic fever virus

J Clin Microbiol. 2009 Apr;47(4):1025-30. doi: 10.1128/JCM.01920-08. Epub 2009 Feb 18.

Abstract

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral zoonosis which occurs throughout Africa, Eastern Europe, and Asia and results in an approximately 30% fatality rate. A reverse transcription-PCR assay including a competitive internal control was developed on the basis of the most up-to-date genome information. Biotinylated amplification products were hybridized to DNA macroarrays on the surfaces of polymer supports, and hybridization events were visualized by incubation with a streptavidin-horseradish peroxidase conjugate and the formation of a visible substrate precipitate. Optimal assay conditions for the detection of as few as 6.3 genome copies per reaction were established. Eighteen geographically and historically diverse CCHF virus strains representing all clinically relevant isolates were detected. The feasibility of the assay for clinical diagnosis was validated with acute-phase patient samples from South Africa, Iran, and Pakistan. The assay provides a specific, sensitive, and rapid method for CCHF virus detection without requiring sophisticated equipment. It has usefulness for the clinical diagnosis and surveillance of CCHF infections under limited laboratory conditions in developing countries or in field situations.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hemorrhagic Fever Virus, Crimean-Congo / genetics
  • Hemorrhagic Fever Virus, Crimean-Congo / isolation & purification*
  • Hemorrhagic Fever, Crimean / diagnosis*
  • Humans
  • Iran
  • Molecular Diagnostic Techniques / methods*
  • Oligonucleotide Array Sequence Analysis / methods*
  • Oligonucleotide Probes / genetics
  • Pakistan
  • Reverse Transcriptase Polymerase Chain Reaction / methods*
  • Sensitivity and Specificity
  • South Africa

Substances

  • Oligonucleotide Probes