Background: Plasmodium falciparum resistance to drugs remains a major public health issue in Niger. The therapeutic failure index for chloroquine and sulphadoxine-pyrimethamine are, respectively 20% and 21.9%. In December 2005, the National Malaria Control Programme promoted the use of artemisinin combination therapy (ACT) as first-line treatment of the uncomplicated malaria cases. Recently, studies have shown a relationship between the SERCA PfATPase6 gene and artemisinin efficacy, and pointed it out as a potential molecular marker for resistance. The goal of this work was to describe the baseline polymorphism of PfATPase6 gene in Niger, at a time when the national implementation of the ACT policy had just begun.
Materials and methods: The DNA polymorphism of the PfATPase6 gene of 87 P. falciparum samples from Niger was analysed by sequencing. The links between the mutation occurrence and environment and human host factors were tested by bivariate analysis.
Results: The P. falciparum PfATPase6 gene presented polymorphisms at codons 537, 561, 569, 630, 639, 716 levels. All the mutations found were rare, except the PfATPaseN569K found in 17.2% of samples. No associated factor has been observed.
Conclusion: The P. falciparum PfATPase gene is polymorphic at the 569 codon. As ACT is getting more and more used, the PfATPase6 gene polymorphism needs to be monitored in association with phenotypic - in vivo and/or in vitro - drug efficacy tests.