The GM2 ganglioside represents an important target for specific anticancer immunotherapy. We designed and synthesized a neoglycopeptide immunogen displaying one or two copies of the GM2 tetrasaccharidic moiety. These glycopeptides were prepared using the Huisgen cycloaddition, which enables the efficient ligation of the alkyne-functionalized biosynthesized GM2 with an azido CD4(+) T cell epitope peptide. It is worth noting that the GM2 can be produced on a gram scale in bacteria, which can be advantageous for a scale-up of the process. We show here for the first time that a fully synthetic glycopeptide, which is based on a ganglioside carbohydrate moiety, can induce human tumor cell-specific antibodies after immunization in mice. Interestingly, the monovalent, but not the divalent, form of GM2 peptide construct induced antimelanoma antibodies. Unlike traditional vaccines, this vaccine is a pure chemically-defined entity, a key quality for consistent studies and safe clinical evaluation. Therefore, such carbohydrate-peptide conjugate represents a promising cancer vaccine strategy for active immunotherapy targeting gangliosides.