Purpose: The proteasome inhibitor bortezomib inhibited cell growth and angiogenesis in neuroblastoma. Bortezomib has been shown to induce synergistic activity when combined with other antineoplastic agents. Here we have investigated the antitumor activity of bortezomib in combination with fenretinide, a synthetic retinoid, against neuroblastoma cells.
Experimental design: Different neuroblastoma cell lines were tested for sensitivity to bortezomib and fenretinide, given alone or in different dose-dependent and time-dependent combination schedules. Cell proliferation, cell viability, and apoptosis were evaluated by measuring 3H-thymidine incorporation, trypan blue staining, DNA fragmentation, and western blot analysis. Angiogenesis was assessed by the chick embryo chorioallantoic membrane assay. An orthotopic neuroblastoma mouse model was used to examine in vivo sensitivity.
Results: Each compound alone was able to induce a dose-dependent inhibition of cell proliferation, with a significant enhanced antiproliferative effect for the drugs used in combination. This inhibition was characterized by marked G2-M and G1 cell cycle arrest with nearly complete depletion of S phase. Bortezomib and fenretinide in association triggered an increased apoptosis through activation of specific genes of the endoplasmic reticulum stress compared with either drug tested alone. Tumor-bearing mice treated with bortezomib plus fenretinide lived statistically significantly longer than mice treated with each drug alone. Histologic evaluation and chorioallantoic membrane analysis of primary tumors showed that the combined therapeutic activity of bortezomib and fenretinide rested upon antitumor and antiangiogenic mechanisms.
Conclusions: These findings provide the rationale for the development of a new therapeutic strategy for neuroblastoma based on this pharmacologic combination.