The trabecular meshwork outflow pathways: structural and functional aspects

Exp Eye Res. 2009 Apr;88(4):648-55. doi: 10.1016/j.exer.2009.02.007. Epub 2009 Feb 23.

Abstract

The major drainage structures for aqueous humor (AH) are the conventional or trabecular outflow pathways, which are comprised of the trabecular meshwork (made up by the uveal and corneoscleral meshworks), the juxtacanalicular connective tissue (JCT), the endothelial lining of Schlemm's canal (SC), the collecting channels and the aqueous veins. The trabecular meshwork (TM) outflow pathways are critical in providing resistance to AH outflow and in generating intraocular pressure (IOP). Outflow resistance in the TM outflow pathways increases with age and primary open-angle glaucoma. Uveal and corneoscleral meshworks form connective tissue lamellae or beams that are covered by flat TM cells which rest on a basal lamina. TM cells in the JCT are surrounded by fibrillar elements of the extracellular matrix (ECM) to form a loose connective tissue. In contrast to the other parts of the TM, JCT cells and ECM fibrils do not form lamellae, but are arranged more irregularly. SC inner wall endothelial cells form giant vacuoles in response to AH flow, as well as intracellular and paracellular pores. In addition, minipores that are covered with a diaphragm are observed. There is considerable evidence that normal AH outflow resistance resides in the inner wall region of SC, which is formed by the JCT and SC inner wall endothelium. Modulation of TM cell tone by the action of their actomyosin system affects TM outflow resistance. In addition, the architecture of the TM outflow pathways and consequently outflow resistance appear to be modulated by contraction of ciliary muscle and scleral spur cells. The scleral spur contains axons that innervate scleral spur cells or that have the ultrastructural characteristics of mechanosensory nerve endings.

Publication types

  • Review

MeSH terms

  • Adult
  • Aqueous Humor / physiology
  • Ciliary Body / physiology
  • Humans
  • Microscopy, Electron
  • Muscle Contraction / physiology
  • Sclera / ultrastructure
  • Trabecular Meshwork / physiology*
  • Trabecular Meshwork / ultrastructure*