In this paper, we propose an automated approach for the joint detection of major sulci on cortical surfaces. By representing sulci as nodes in a graphical model, we incorporate Markovian relations between sulci and formulate their detection as a maximum a posteriori (MAP) estimation problem over the joint space of major sulci. To make the inference tractable, a sample space with a finite number of candidate curves is automatically generated at each node based on the Hamilton-Jacobi skeleton of sulcal regions. Using the AdaBoost algorithm, we learn both individual and pairwise shape priors of sulcal curves from training data, which are then used to define potential functions in the graphical model based on the connection between AdaBoost and logistic regression. Finally belief propagation is used to perform the MAP inference and select the joint detection results from the sample spaces of candidate curves. In our experiments, we quantitatively validate our algorithm with manually traced curves and demonstrate the automatically detected curves can capture the main body of sulci very accurately. A comparison with independently detected results is also conducted to illustrate the advantage of the joint detection approach.