T cell-mediated uveitis is strongly associated with many systemic inflammatory disorders. Th17 cells are a novel T cell subset characterized by production of interleukin (IL)-17. In this study, we used DO11.10 mice to investigate the role of IL-17 in the pathogenesis of uveitis. CD4(+) T cells in DO11.10 mice are genetically engineered to react with ovalbumin (OVA). IL-17 expression was determined by real-time PCR and ELISPOT. Uveitis was induced by intravitreal injection of OVA, and ocular inflammation was evaluated by intravital microscopy. OVA challenge significantly induced IL-17 production by DO11.10 splenocytes in vitro. Next, we examined whether OVA challenge could elicit local inflammation and induce IL-17 in vivo. OVA elicited marked neutrophil-predominant inflammatory cell infiltration in the eyes. This leukocyte influx was mediated by CD4(+) lymphocytes as evidenced by significant inhibition of the ocular inflammation by CD4+ depleting antibody. Compared to control mice, OVA treatment induced IL-17 expression. Moreover, anti-IL-17 antibody markedly reduced OVA-mediated ocular inflammation. Finally, the neutralization of IL-17 attenuated ocular expression of CXCL2 and CXCL5, two cytokines which are chemotactic for neutrophils. Our study suggests that IL-17 is implicated in the pathogenesis of this T cell-mediated model of uveitis in part through neutrophil chemotaxis as a downstream effect of IL-17.