Array-based optical nanolithography using optically trapped microlenses

Opt Express. 2009 Mar 2;17(5):3640-50. doi: 10.1364/oe.17.003640.

Abstract

Current demands on optical nanolithography require the ability to rapidly and cost-effectively write arbitrary patterns over large areas with sub-diffraction limit feature sizes. The challenge in accomplishing this with arrays of near-field probes is maintaining equal separations between the substrate and each probe, even over non-planar substrates. Here we demonstrate array-based laser nanolithography where each probe is a microsphere capable of fabricating 100 nm structures using 355 nm light when self-positioned near a surface by Bessel beam optical trapping. We achieve both a feature size uniformity and relative positioning accuracy better than 15 nm, which agrees well with our model. Further improvements are possible using higher power and/or narrower Bessel beam optical traps.