Connections between ETV6-modulated genes: identification of shared features

Cancer Inform. 2008:6:183-201. doi: 10.4137/cin.s556. Epub 2008 Apr 21.

Abstract

Accumulating genetic and functional evidence point to ETV6 as being the tumour suppressor gene targeted by the deletions at chromosome 12p12-13 found in various cancers, particularly childhood leukemia. ETV6 is a ubiquitously expressed transcription factor (TF) of the ETS family with very few known targeted genes. We recently compiled a list of 87 ETV6-modulated genes that can be classified into a number of subgroups based on their coordinated expression patterns. In the present report, we hypothesized that genes presenting a similar profile of modulation could also share biological features, promoter sequence similarities and/or, common transcription factor binding sites (TFBSs). Using an exploratory approach based on hierarchical clustering of expression data, Gene Ontology (GO) terms, sequence similarity and evolutionary conserved putative TFBSs, we found that many genes presenting a similar expression profile also share biological features and/or conserved predicted TFBSs but rarely show detectable promoter sequence similarities. We also calculated the proportion of ETV6-modulated genes that have any conserved TFBSs of the Jaspar database in their regulatory sequence and compared these proportions to those calculated for two other gene lists, ETV6 non-modulated and ETS-regulated. We found that the NF-kB, c-REL and p65 TFBSs, which all bind TFs of the REL class, were under-represented among the ETV6-modulated genes compared to the ETV6-non-modulated genes, while the Broad-complex 1 TFBS appeared to be over-represented. NF-Y and Chop/cEBP TFBSs were over-represented in the promoters of ETV6-modulated genes compared to ETS-regulated genes. These analyses will help direct further studies intending to understand the role of ETV6 as a transcriptional regulator and aid in constructing the ETV6-regulatory gene network.

Keywords: ETV6; ets member; leukemogenesis; microarrays; transcription factor.