This paper demonstrates a proof-of-concept approach for producing genipin-gelatin microcapsules of precisely controlled and monodisperse size distributions by the microfluidic channels. We have demonstrated that one could control the size of emulsions from 130 microm to 580 microm in diameter (with a variation of less than 5%) by altering the relative sheath/sample flow rate ratio. In addition, Results show that the encapsulation and in vitro release of a model drug, 5-fluorouracil, to enhance the effect of controlled release. We demonstrated that the appropriate particle size for different release patterns is predictable, enabling better application of genipin-gelatin microcapsules as a drug carrier. The proposed microfluidic chip is capable of generating relatively uniform micro-droplets with well controllable diameter, and it has the added advantages of being a simple, low cost, and high throughput process.