Frost at flowering can cause significant damage to cereal crops. QTL for low temperature tolerance in reproductive tissues (LTR tolerance) were previously described on barley 2HL and 5HL chromosome arms. With the aim of identifying potential LTR tolerance mechanisms, barley Amagi Nijo x WI2585 and Haruna Nijo x Galleon populations were examined for flowering time and spike morphology traits associated with the LTR tolerance loci. In spring-type progeny of both crosses, winter alleles at the Vrn-H1 vernalization response locus on 5H were linked in coupling with LTR tolerance and were unexpectedly associated with earlier flowering. In contrast, tolerance on 2HL was coupled with late flowering alleles at a locus we named Flt-2L. Both chromosome regions influenced chasmogamy/cleistogamy (open/closed florets), although tolerance was associated with cleistogamy at the 2HL locus and chasmogamy at the 5HL locus. LTR tolerance controlled by both loci was accompanied by shorter spikes, which were due to fewer florets per spike on 5HL, but shorter rachis internodes on 2HL. The Eps-2S locus also segregated in both crosses and influenced spike length and flowering time but not LTR tolerance. Thus, none of the traits was consistently correlated with LTR tolerance, suggesting that the tolerance may be due to some other visible trait or an intrinsic (biochemical) property. Winter alleles at the Vrn-H1 locus and short rachis internodes may be of potential use in barley breeding, as markers for selection of LTR tolerance at 5HL and 2HL loci, respectively.