Purpose: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Current chemotherapy regimes include the topoisomerase II poison etoposide and the transcription inhibitor actinomycin D. Poor clinical response necessitate identification of new agents to improve patient outcomes.
Methods: We assessed the in vitro cytotoxicity (MTT assay) of DNA intercalating agents in five established human RMS cell lines. These include novel classes of transcription inhibitors and topoisomerase poisons, previously shown to have potential as anti-cancer agents.
Results: Amongst the former agents, bisintercalating bis(9-aminoacridine-4-carboxamides) linked through the 9-position, and bis(phenazine-1-carboxamides) linked via their side chains, are compared with established transcription inhibitors. Amongst the latter, monofunctional acridine-4-carboxamides related to N-[2-(dimethylamino)ethyl]acridine-4-carboxamide, DACA, are compared with established topoisomerase poisons.
Conclusions: Our findings specifically highlight the topoisomerase poison 9-amino-DACA, its 5-methylsulphone derivative, AS-DACA, and the bis(phenazine-1-carboxamide) transcription inhibitor MLN944/XR5944, currently in phase I trial, as candidates for further research into new agents for the treatment of RMS.