The use of mesenchymal stem cells in tissue engineering: A global assessment

Organogenesis. 2008 Jan;4(1):23-7. doi: 10.4161/org.6048.

Abstract

Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.

Keywords: mesenchymal stem cells; regenerative medicine; tissue engineering.