We investigated the clearance of radiolabeled natural surfactant from the alveolar space of the isolated perfused rat lung. 3H, 35S-natural surfactant was prepared from rat lungs that had been perfused with [methyl-3H]choline and [35S]methionine. The biosynthesized material contained greater than 95% of 3H in phosphatidylcholine (PC) and approximately 80% of 35S in surfactant protein A. Natural surfactant (1 mumol PC) was instilled into the trachea; lungs were analyzed 5 min later or after 2 h perfusion to determine surfactant uptake, defined as lung lavage-resistant 3H or 35S [% of instilled disintegrations per minute(dpm)]. Uptake at 5 min was 31.4 +/- 0.37% for 3H and 31.9 +/- 0.85% for 35S (mean +/- SE, n = 4). At 2 h, uptake was 46.6 +/- 0.96% for 3H and 45.8 +/- 1.1% for 35S (n = 7). In the presence of 0.1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), uptake at 2 h for both 3H and 35S was stimulated to approximately 57% of instilled dpm (n = 4). Microsomes and plasma membranes isolated from lung homogenates had a ratio of 3H to 35S that was similar to the original surfactant, whereas 3H/35S in isolated lamellar bodies was increased 2.1-fold. Degradation of lipid was indicated by finding 13.4 +/- 0.65% of homogenate 3H in the aqueous fraction of lung extract after 2 h perfusion; only 2.3 +/- 0.47% of 35S dpm were soluble in trichloroacetic acid, suggesting significantly less protein breakdown. Lipid degradation was increased more than twofold by 8-BrcAMP, whereas protein degradation was not changed significantly.(ABSTRACT TRUNCATED AT 250 WORDS)