Cerebral blood flow response to PaCO2 during hypothermic cardiopulmonary bypass in rabbits

Anesthesiology. 1991 Oct;75(4):662-8. doi: 10.1097/00000542-199110000-00017.

Abstract

Differences in cerebral blood flow (CBF) between alpha-stat and pH-stat management depend on preserved responsiveness of the cerebral vasculature to changes in arterial carbon dioxide tension (PaCO2). We tested the hypothesis that hypothermia-induced reductions in CBF would decrease the CBF response to changing PaCO2 (delta CBF/delta PaCO2). Anesthetized New Zealand white rabbits were randomly assigned to one of three temperature groups--group 1 (37 degrees C, n = 9); group 2 (31 degrees C, n = 10); or group 3 (25 degrees C, n = 10)--and were cooled using cardiopulmonary bypass. After esophageal temperature equilibration (approximately 40 min), oxygenator gas flows were serially varied to achieve PaCO2 values of 20, 40, and 60 mm Hg (temperature-corrected). All animals were studied at all three PaCO2 levels in random order. At each level of PaCO2, CBF and masseter blood flow were determined using radiolabeled microspheres. There were no significant differences between groups with respect to mean arterial pressure (approximately 80 mmHg), central venous pressure (approximately 4 mmHg), or hematocrit (approximately 22%). Prior normothermic studies have found delta CBF/delta PaCO2 to be proportional to CBF. Nevertheless, in this study, with hypothermia-induced reductions in CBF, delta CBF/delta PaCO2 was not significantly different between temperature groups. Thus, hypothermia either increased the sensitivity of the cerebral vasculature to carbon dioxide and/or increased the effective level of cerebrospinal fluid respiratory acidosis produced by each increment of temperature-corrected PaCO2.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Dioxide / blood*
  • Cardiopulmonary Bypass*
  • Cerebrovascular Circulation / physiology*
  • Hypothermia, Induced*
  • Rabbits

Substances

  • Carbon Dioxide