Early activation of the IL-12/IFN-gamma axis has been shown following Salmonella enterica serovar Enteritidis (S. Enteritidis) infection. We were interested to study whether IL-22 and IL-17A production is initiated early in response to S. Enteritidis. We demonstrate here that IL-22 was strongly elevated in the peritoneal lavage fluid and in serum already 1 day post-intraperitoneal infection (d.p.i.) of mice; not only IL-22 but also IL-17A was produced ex vivo by activated peritoneal exudate cells (PEC). Peritoneal gammadelta T cells were identified as cellular source of IL-17A. The early IL-22 production was completely IL-23-dependent. In contrast, IL-17A production was only partially IL-23-dependent. To investigate the local production of upstream cytokines important for induction of IL-22, IL-17A and IFN-gamma during salmonellosis, the production of IL-23 and IL-12 was studied. Elevated p19 and p40 mRNA levels were found in PEC at 1 d.p.i., whereas p35 mRNA levels were not changed. Besides, the T(h)17-promoting cytokines IL-6, IL-1beta and transforming growth factor-beta were produced in response to S. Enteritidis. However, IL-6 was not required for IL-22 or IL-17A production by PEC. By ex vivo analysis of PEC at 1 d.p.i., we show that the major producers of early IL-12/23p40 in the peritoneal cavity were dendritic cells (DC), whereas macrophages notably contributed to IL-6 production. Taken together, these data suggest that DC initiate early IL-22 production at the site of infection which may contribute to resistance against salmonellosis. Furthermore, we provide evidence that production of IL-22 and IL-17A is differentially regulated during infection.