Activation of microglia by amyloid {beta} requires P2X7 receptor expression

J Immunol. 2009 Apr 1;182(7):4378-85. doi: 10.4049/jimmunol.0803612.

Abstract

Extracellular ATP is a mediator of intercellular communication and a danger signal. Release of this and other nucleotides modulates microglia responses via P2Y and P2X receptors, among which the P2X(7) subtype stands out for its proinflammatory activity and for up-regulation in a transgenic model of Alzheimer disease and in brains from Alzheimer disease patients. Here we show that amyloid beta (Abeta) triggered increases in intracellular Ca(2+) ([Ca(2+)](i)), ATP release, IL-1beta secretion, and plasma membrane permeabilization in microglia from wild-type but not from P2X(7)-deleted mice. Likewise, intra-hippocampal injection of Abeta caused a large accumulation of IL-1beta in wild-type but not in P2X(7)(-/-) mice. These observations suggest that Abeta activates a purinergic autocrine/paracrine stimulatory loop of which the P2X(7) receptor is an obligate component. Identification of the P2X(7) receptor as a non-dispensable factor of Abeta-mediated microglia stimulation may open new avenues for the treatment of Alzheimer disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Amyloid beta-Peptides / metabolism*
  • Animals
  • Calcium / metabolism
  • Cell Membrane Permeability / physiology
  • Interleukin-1beta / metabolism*
  • Mice
  • Mice, Knockout
  • Microglia / metabolism*
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / metabolism*
  • Receptors, Purinergic P2X7

Substances

  • Amyloid beta-Peptides
  • Interleukin-1beta
  • P2rx7 protein, mouse
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2X7
  • Adenosine Triphosphate
  • Calcium