We determined the action mechanism of cordycepin, a major bioactive component of Cordyceps militaris, on responses of rat aortic smooth muscle cells (RASMCs) and on vascular disorders, especially neointimal formation. Cordycepin inhibited platelet-derived growth factor-BB (PDGF-BB)-induced RASMCs migration and proliferation in a dose-dependent manner. However, pre-treatment with N(omega)-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and 1,3-dipropyl-8-sulphophenylxanthine (DPSPX), an A(1)/A(2) adenosine-receptor antagonist, abolished the inhibitory role of cordycepin. Cordycepin suppressed the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and heat shock protein 27 (Hsp27), but not that of extracellular signal-regulated kinase (ERK) 1/2 in RASMCs stimulated by PDGF-BB. The production of reactive oxygen species (ROS), O(2)(-) and H(2)O(2), induced by PDGF-BB was abolished by the treatment of cordycepin. Moreover, the sprout outgrowth of aortic rings by PDGF-BB was inhibited by cordycepin. In vivo neointimal formation evoked by balloon-injury was significantly attenuated by the administration of cordycepin. These results demonstrate that cordycepin may exert inhibitory effects on PDGF-BB-induced migration and proliferation via interfering with adenosine receptor-mediated NOS pathways, thus resulting in the attenuation of neointima formation. In conclusion, cordycepin may be a potent, promising anti-atherosclerosis agent.