Metallothionein mRNA stability in chicken and mouse cells

Biochim Biophys Acta. 1991 Oct 8;1090(2):223-9. doi: 10.1016/0167-4781(91)90105-u.

Abstract

Northern blot analysis revealed that metallothionein (MT) mRNAs accumulate after inhibition of protein synthesis with cycloheximide (CHX) in primary cultures of chick embryo hepatocytes and fibroblasts, as well as in an established mouse hepatoma cell line. Inhibition of RNA synthesis with actinomycin D (AMD) led to rapid loss of MT mRNAs in these cells, whereas CHX dramatically retarded the rate of MT mRNA decay (t1/2 greater than 24 h). These results suggest that CHX causes MT mRNA accumulation primarily by increasing stability of MT mRNA. Thus, changes in MT mRNA turn-over rates may play an important role in regulating the accumulation of MT mRNA. The half-lives of MT mRNAs in chicken and mouse cells were determined by oligodeoxyribonucleotide excess solution hybridization with RNA samples extracted after different periods of exposure to AMD. The half-life of chicken MT (cMT) mRNA in uninduced chicken embryo hepatocytes was 3.6 h. Induction of cMT mRNA by pretreatment of these cells with zinc (Zn) prior to exposure to AMD, did not alter the half-life of cMT mRNA significantly. In contrast, cadmium (Cd) induction led to a 2.5-fold increase in the stability of this mRNA. In uninduced chicken embryo fibroblasts, cMT mRNA levels were too low to allow accurate determination of half-life using the methods employed here. However, the half-life of this mRNA in Zn-induced chicken embryo fibroblasts was 6.2 h, whereas it was 9.3 h in Cd-induced cells. Thus, the turn-over rate of cMT mRNA after Cd-induction is very similar in chick embryo fibroblasts and hepatocytes. These data suggest that the accumulation of MT mRNA in chicken cells may reflect, in part, metal-specific effects on MT mRNA stability. The half-lives of mouse MT-I and MT-II (mMT-I and mMT-II) mRNAs in uninduced BNL hepatoma cells were identical (9.2 h), and were not effectively altered after induction by metals (Zn, Cd) or interleukin-1 beta (IL-1 beta). However, mMT mRNAs in pachytene spermatocytes and round spermatids, freshly isolated from the adult testes, were 2.2- to 4.5-fold more stable than in hepatoma cells. These results suggest that cell-type specific accumulation of mMT mRNAs may be regulated, in part, by mRNA stability.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Cells, Cultured / drug effects
  • Cells, Cultured / metabolism
  • Chick Embryo
  • Cycloheximide / pharmacology
  • Dactinomycin / pharmacology
  • Gene Expression Regulation
  • Metallothionein / genetics*
  • Mice
  • Molecular Sequence Data
  • RNA, Messenger / isolation & purification
  • RNA, Messenger / metabolism*

Substances

  • RNA, Messenger
  • Dactinomycin
  • Metallothionein
  • Cycloheximide