The objective was to study effects of fear on brain activity, functional connectivity and brain-behavior relationships during symptom provocation in subjects with specific phobia. Positron emission tomography (PET) and (15)O water was used to measure regional cerebral blood flow (rCBF) in 16 women phobic of either snakes or spiders but not both. Subjects watched pictures of snakes and spiders serving either as phobic or fear-relevant, but non-phobic, control stimuli depending on phobia type. Presentation of phobic as compared with non-phobic cues was associated with increased activation of the right amygdala and cerebellum as well as the left visual cortex and circumscribed frontal areas. Activity decreased in the prefrontal, orbitofrontal and ventromedial cortices as well as in the primary somatosensory cortex and auditory cortices. Furthermore, amygdala activation correlated positively with the subjective experience of distress. Connectivity analyses of activity in the phobic state revealed increased functional couplings between voxels in the right amygdala and the periamygdaloid area, fusiform gyrus and motor cortex. During non-phobic stimulation, prefrontal activity correlated negatively with amygdala rCBF, suggesting a phobia-related functional decoupling. These results suggest that visually elicited phobic reactions activate object recognition areas and deactivate prefrontal areas involved in cognitive control over emotion-triggering areas like the amygdala, resulting in motor readiness to support fight or flight.