Interest in studies on the neutralization of snake venoms and toxins by diverse types of inhibitors is two-fold. From an applied perspective, results enclose the potential to be translated into useful therapeutic products or procedures, to benefit patients suffering from envenomings. From a basic point of view, on the other hand, neutralizing agents may be used as powerful dissecting tools to determine the relative role of toxins within the context of the overall pathology induced by a venom, or to increase our understanding on the molecular mechanisms by which toxins exert their harmful actions upon particular targets. The venom of the snake Bothrops asper has been the subject of a number of experimental studies addressing its neutralization by antibodies, as well as by non-immunologic inhibitors, including natural products derived from plants or animals, or synthetic drugs. As summarized in the present review, neutralization studies on this venom and some of its isolated toxins have contributed to a better understanding of envenomings by this species, and their treatment. In addition, such studies have provided valuable knowledge on the mechanisms of action and the relative functional importance of particular toxins of this venom, especially in the case of its myotoxic phospholipases A(2) and hemorrhagic metalloproteinases.