Metal-insulator transition-induced adsorption-resistant behavior of small Au nanoparticles

Chemphyschem. 2009 Jun 2;10(8):1270-3. doi: 10.1002/cphc.200900001.

Abstract

Smaller nonmetallic nanoparticles are more inert: Metal-insulator transition of Au nanoparticles on silica is closely related to the metal-support charge transfer, which has a strong influence on chemisorption reactivity of Au. Smaller nonmetallic Au nanoparticles are more resistant towards butanethiol chemisorption [picture and graph: see text].The size-dependent variation of the electronic and chemical properties of Au nanoparticles formed on native Si oxide surfaces is investigated using synchrotron radiation photoemission spectroscopy and ultraviolet photoelectron spectroscopy. The adsorption reactivity toward butanethiol adsorption initially increases with decreasing particle size; however, the reactivity of Au nanoparticles becomes gradually lower below a size of approximately 0.8 nm. The photoemission spectral changes suggest a metal-insulator transition, accompanied by negative charge transfer from the nanoparticles to the support, which may be the source of the chemical inertness of small Au nanoparticles.