Little is known about the organization of corticofugal projections controlling antagonistic jaw muscles. To address this issue, we employed retrograde (Fluorogold; FG) and anterograde (biotinylated dextran amine; BDA) tracing techniques in rats. Three groups of premotoneurons were identified by injecting FG into the jaw-closing (JC) and -opening (JO) subdivisions of the trigeminal motor nucleus (Vmo). These were 1) the intertrigeminal region (Vint) and principal trigeminal sensory nucleus for JC nucleus; 2) the reticular region medial to JO nucleus (RmJO) for JO nucleus; and 3) the parabrachial (Pb) and supratrigeminal (Vsup) nuclei, reticular regions medial and ventral to JC nucleus, rostrodorsomedial oralis (Vor), and juxtatrigeminal region (Vjuxt) containing a mixture of premotoneurons to both the nuclei. Subsequently, FG was injected into the representative premotoneuron structures. The JC and JO premotoneurons received main afferents from the lateral and medial agranular fields of motor cortex (Agl and Agm), respectively, whereas afferents to the nuclei with both JC and JO premotoneurons arose from Agl also and from primary somatosensory cortex (S1). Finally, BDA was injected into each of the three cortical areas representing the premotoneuron structures to complement the FG data. The Agl and Agm projected to reticular regions around the Vmo, whereas the Pb, Vsup, Vor, and Vjuxt received input from Agl. The S1 projected to the trigeminal sensory nuclei as well as to the Pb, Vsup, and Vjuxt. These results suggest that corticofugal projections to Vmo via premotoneuron structures consist of multiple pathways, which influence distinct patterns of jaw movements.