Photolysis of o-nitrobenzaldehyde in the gas phase: a new OH* formation channel

Chemphyschem. 2009 May 11;10(7):1135-42. doi: 10.1002/cphc.200800735.

Abstract

Photolysis of gaseous o-nitrobenzaldehyde (o-NBA) with selected different excitation wavelengths (355-400 nm) is investigated, and the nascent OH radical is detected by the single-photon laser-induced fluorescence (LIF) technique. The relative quantum yield and rotational excitation of OH formation are found to be dependent on the excitation energy. The distributions of rotational, spin-orbit, and Lambda-doublet states are obtained at 355-400 nm by analyzing the experimental data. The OH radicals are found to be vibrationally cold at all photolysis wavelengths. The spin-orbit and Lambda-doublet states have nonstatistical distributions. To understand the dissociative process involved in the OH-generating channel, DFT calculations are performed. Based on both experimental and theoretical results, possible photolysis channels of o-NBA leading to the OH fragment are proposed and discussed.