We have used an iterative in vitro genetic selection to identify the important structural features of the viral RNA element bound by the Rev protein of human immunodeficiency virus type 1 (HIV-1). Functional Rev-binding RNAs were selected from a pool of 10(13) variants of the wild-type Rev-binding domain. Bases conserved among the binding species define a 20 nucleotide core binding element. Covariation of some of these conserved bases indicates that the Rev-binding element is a stem-bulge-stem with a G:G base pair in the bulge. Mutational studies show that this non-Watson-Crick base pair is required for Rev binding in vitro and Rev responsiveness in vivo. We propose that the G:G base pair distorts the sugar-phosphate backbone of viral RNA and that this distortion is a critical determinant of recognition by Rev.