A multi-gene phylogeny reveals novel relationships for aberrant genera of Australo-Papuan core Corvoidea and polyphyly of the Pachycephalidae and Psophodidae (Aves: Passeriformes)

Mol Phylogenet Evol. 2009 Aug;52(2):488-97. doi: 10.1016/j.ympev.2009.03.019. Epub 2009 Mar 31.

Abstract

The core Corvoidea is the largest and most diverse oscine assemblage within the Australo-Papuan region. Although central to an understanding of the evolutionary history and biogeography of the group the composition and intergeneric relationships of the Australo-Papuan radiation remain poorly understood. Here we analysed DNA sequence data from two nuclear gene regions and the mitochondrial cytochrome b gene, for 40 species of core Corvoidea to test the systematic affinities of key Australo-Papuan lineages. The families Pachycephalidae (whistlers, shrike-thrushes and allies) and Psophodidae (whipbirds, quail-thrush and allies) were both recovered as polyphyletic assemblages. The core pachycephaline assemblage comprised Pachycephala, Colluricincla, parts of Pitohui, and Falcunculus with the remaining genera resolving as four divergent lineages with no clearly defined affinities. Ptilorrhoa and Cinclosoma (Cinclosomatidae) formed a clade separate from Psophodes (Psophodidae) but neither clade showed clear affinities to any other taxa. Novel relationships were also identified for three aberrant New Guinean genera; ditypic Machaerirhynchus and monotypic Rhagologus were both nested within an assemblage that included the Artamidae and African malaconotoids (bush-shrikes and allies) while the enigmatic Ifrita was found to be part of an assemblage that included the Monarchidae and Paradisaeidae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleus / genetics
  • DNA, Mitochondrial / genetics
  • Evolution, Molecular*
  • Genetic Speciation
  • Geography
  • Likelihood Functions
  • Models, Genetic
  • Passeriformes / classification
  • Passeriformes / genetics*
  • Phylogeny*
  • Sequence Alignment
  • Sequence Analysis, DNA

Substances

  • DNA, Mitochondrial